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Abstract—In recent years, researchers have proposedyber- In the past one and half decade, risk protection techniques &

insurance as a suitable risk-management technique for enhancing variety of computer science fields such as cryptographygviere
security in Internet-like distributed systems. However, anongst engineering, and software engineering have continuallyglemian-
other factors, information asymmetry between the insurer ad provements. Inspite of such improvements, recent artimleSchneier
the insured, and the inter-dependent and correlated natureof [41] and Anderson[[3][4][5] have stated that it is impossikb
cyber risks have contributed in a big way to the failure of cyker- achieve a 100% Internet security protection. The authadribate
insurance markets. Security experts have argued in favor of this impossibility primarily to six reasons:

operating system (OS) platform switching (ex., from Windove 1) Existing technical solutions are not sound, i.e.,thevenot

to Un_|x-based OSs) or secure OS__adoptlon as being one_of the always exist fool-proof ways to detect and identify evenlwel
techniques that can potentially mitigate the problems posig a dened threats; for example, even state of the art detecfors o
challenge to successful cybelf-msurance_ mark_ets. In _thlsega_rd port scanners and other known anomalies suffer from pesitiv
we model OS platform switching dynamics using asocial gossip rates of false positives and false negatives [21]. In aotdliti
mechanism and stuc_iy three important questions related to t!a the originators of threats, and the threats they producayev
nature of the dynamics, for Internet-like distributed systems: (i) automatically in response to detection and mitigation timhs
Wh'Ch type of networks should cyber-lnsure_rs target for insir- being deployed, which makes it harder to detect and mitigate
ing?, (if) what are the bounds on the asymptotic performancéevel evolving threat signatures and characterisfics [46]. Otyjges

of a _network, where the perfo_rmance parameter Is an average of damages caused by non-intentional users, such as denial
function of the long-run individual user willingness to adgt of service as a resuit of flash crowds cail be predicted
secure OSs?, and (iii) how can cyber-insurers use the topaal and alleviated to some extent but not eliminated completely

information of their clients to incentivize/reward them during Finally, completely eliminating risks would require theeusf
offering contracts? Our analysis is important to a profit-minded formal methods to design provably secure systems - however,

cyber-insurer, who wants to target the right network, desig these methods capture with difficulty the presence of those
optimal contracts to resolve information asymmetry problems, messy humans, even non malicious humans, in the [odp [36].

and at the same time promote the increase of overall network 5y The nternet is a distributed system, where the systemsuse
security through increasing secure OS adoption amongst use have divergent security interests and incentives, leading
Keywords - cyber-insurance, secure OS, OS platform switching the problem of ‘misaligned incentives’ amongst users. For
example, a rational Internet user might well spend $20 tp ato
virus trashing its hard disk, but would hardly have any iniven
I. INTRODUCTION to invest sufficient amounts in security solutions to préven
) computer being used by an attacker for a service-deniatlatta
The Internet has become a fundamental and an integral part of  on a wealthy corporation like an Amazon or a Microsbft|[44].

our daily lives. Billions of people nowadays are using theeinet Thus, it is evident that the problem of misaligned incergtive
for various types of applications. However, all these agpions are can be resolved only if liabilities are assigned to partiese(s)
running on a network, that was built under assumptions, sofne that can best manage risk.
which are no longer valid for today's applications, e,gattlll users  3) The risks faced by Internet users are often correlated and
on the Internet can be trusted and that there are no malieiensents interdependent. As a result a user taking protective adtion
propagating in the Internet. On the contrary, the infrastme, the an Internet like distributed system creates positive ezliies
users, and the services offered on the Internet today arsubject [27] for other networked users that in turn may discourage
to a wide variety of risks. These risks include distributethidl of them from making appropriate security investments, |@d|n
service attacks, intrusions of various kinds, hackingsipinig, worms, to the ‘free-riding’ problem[[I8][IBI[34][37]. The fredeing
viruses, spams, etc. In order to counter the threats posduehysks, problem leads to suboptimal network security.
Internet usefshave traditionally resorted to antivirus and anti-spam 4) Network externalities due ttock-in and first-mover effects
softwares, firewalls, and other add-ons to reduce the fikeli of [3] affect the adoption of technology. Katz and Shapirol [22]
being affected by threats. In practice, a large industrymfzanies have analyzed that externalities lead to the classic Seshap
like Symantec, McAfeetc.) as well as considerable research efforts adoption curve, according to which slow early adoption gjive
are currently centered around developing and deployinds tand way to rapid deployment once the number of users reaches a
techniques to detect threats and anomalies in order to girte critical mass. The initial deployment is subject to userdfies
Internet infrastructure and its users from the negativeaichpf the exceeding adoption costs, which occurs only if a minimum
anomalies. number of users adopt a technology; so everyone might wait fo
others to go first, and the technology never gets deployed. Fo
1The term ‘users’ may refer to both, individuals and orgatires. example, DNSSEC, and S-BGP are secure protocols that have
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been developed to better DNS and BGP in terms of securiéypout and not differentiating based on products (e.g.,-\antgs
performance. However, the challenge is getting them deploysoftware) installed by users. In a recent arti¢le [6] shoat teven
by providing sufficient internal benefits to adopting firms.  under ideal conditions of independent and non-correlaybererisks,
5) Measuring risks is a difficult proposition_[40]. Risks cabd an optimal cyber-insurance contract that accounts for theerae
be managed better or completely eliminated until they can Iselection and the moral hazard problemerpricesclient premiums,
measured better. in turn de-incentivizing clients to make cyber-insurancarkets a
6) Many security software markets have aspects deraons success. Thus, it is evident that market-based approachegigate
market[1] or even worse, i.e., by looking at security softwarethe effects of information asymmetry will most likely faib tenable
even the vendor does not know how secure its software nisarket success under non-ideal conditions of interdependead
[5]. So buyers have no reason to pay for more protection, aadrrelated cyber-risks.
vendors are disinclined to invest time, money, and effort to
strengthen their security software code. B. A Way Towards Successful Cyber-insurance Markets

In view of the above mentioned inevitable barriers to 1008k ri  Recently, researchers have argued in favoropérating system
mitigation, the need arises for alternative methods ofmskiagement (0OS) platform switchings one technique that could lead to successful
in the Internet. Anderson and Moorie [4] state that microeauins, cyber-insurance markets in futufé [7]. A robust OS (ex.uibased
game theory, and psychology will play as vital a role in effee  OSs) has more built-in security and permission features thase
risk management in the modern and future Internet, as did tBeits counterparts (ex., Windows) and generally puts itspaers
mathematics of cryptography a quarter century ago. In thi@nd, in a low risk category[[7], thereby mitigating the adverse selectio
cyber-insurances a psycho-economic-driven risk-management teclyroblem. In addition, a widespread robust OS adoption by wsals
nique, where risks are transferred to a third party, i.e.inaorance also reduces the magnitude of interdependent and coneiates. As
company, in return for a fee, i.e., thesurance premiuth The far as the moral hazard problem is concered, effective arésm
concept of cyber-insurance is growing in importance amosgsurity  design [38][39] will lead to optimal contracts where premaiwill
engineers. The reason for this is three fold: 1) ideallyetyibsurance seem to be fair to clients, thus promoting markets for cybsmance.
increases Internet user safety because the insured iperesif- However, not all Internet users adopt the Linux-based O&s i
defense as a ration.al response to the reduction in irjsumam.ium Unix BSD, Linux, and MacOS as their platform of computinga-St
[20][25](43][48]. This fact has also been mathematicaltpyen by tistically speaking, most naive Internet users around theidiprefer
the authors in[29][31], 2) in the IT industry, the mindsetatfsolute the Windows OS due to its ease of use and its support for ngriad
protection’ is slowly changing with the realization thatsalute of application softwares and web applications [3]. Inténegy, the
security is impossible and too expensive to even approatiilew percentage of users adopting MacOS/Unix/Linux as theifepred
adequate security is good enough to enable normal functidhe QS are increasing year after ye(ttp://www.w3schools.ccbh)This
rest of the risk that cannot be mitigated can be transfewesithird trend implies that Internet users are slowly increasingr flomdness

party [33], and 3) cyber-insurance will lead to a market 8otuthat  towards Unix-based OSs. There are three potential reaswnthé
will be aligned with economic incentives of cyber-insurarel users aforementioned user affinity:

(individuals/organizations) - the cyber-insurers wilkegrofit from
appropriately pricing premiums, whereas users will seekadge
potential losses. In practice, users generally employ alltameous
combination of retaining, mitigating, and insuring ris/&2].

« Various types of popular applications that were previousy
supported by Unix-based OSs are nowadays being supported by
the same with high ease of usability. For example, the highly
popular text editorMicrosoft Word traditionally designed to

A. Why Cyber-insurance Has Not Taken Off ? :(L)Jnugg Windows now has a MacOS version which is very easy

Sufficient evidence exists in daily life (e.g., in the formaafto and | | addition to Unix-based OSs being more latently secure tha
health insurance) as well as in the academic literaturecifspaly Windows and increasingly supporting user popular apptioat
focusgd on cyber-lnsuran:el_20]\_2‘.5]|_2‘.9]|_E:1]I_43] thatunsnce-based their GUIs are getting increasingly attractive and usesriiy.
solutions are useful approaches to pursue,i.e., as a corapteto « Changing between ease of use OSs is a natural behavioral
other security measures (e.g., anti-virus software). Wewedespite process which poses few technical, behavioral, or economic
all promises, current cyber-insurance markets are norpettive, constraints on the user.

specialized, and non-liquid. The inability of cyber-insoce in T
becoming a common reality is due to a number of unresolv%
research challenges as well as practical considerations. rfiost :
prominent amongst them afi@aformation asymmetnbetween the
insurer and the insured, and the interdependent and cedetature
of cyber-risks[[6][7]. Information asymmetry has a sigrafit effect
on most insurance environments, where typical considerainclude
inability to distinguish between users of different (highdalow
risk) types, i.e., theadverse selectiorproblem, as well as users
undertaking actions that affect loss probability after theurance
contract is signed, i.e., thmoral hazardproblem. However, there
are important aspects of information asymmetry that aréiqodar
to cyber-insurance for distributed computing environraenthese
include malicious users hiding information about theieirtions and
anti-social behavior from their insurers, users lackinfprimation
about other networked nodes, as well as insurers lackimgrirdtion

us, we qualitatively conclude that OS platform switch{eg., from
ndows to Unix-based OSs), or adopting secure OSs wouldrezgh
overall network security and favor the success of cybarrensce
markets, as it would mitigate the information asymmetrybpem
and reduce the interdependence and correlation of digtdbsystem
risks, without violating behavioral, economic, and polmynstraints
beyond a considerable extert.thing to note here is that malicious
users would want to spend more efforts in breaking into Ursged
OSs as soon as they start becoming popular, however therédwou
then be a new OS which would be significantly better than Unix-
based OSs in terms of latent security strength, thanks tallear
research developments in the field of operating systemss, e
firmly believe that irrespective of time, there would alwdnes the
scope of adopting a more secure OS.

1) Research Motivation:With respect to OS switching dy-
namics it is evident that a cyber-insurer would prefer touresa
network of users having high willingness to adopt secure @Ss

2Runningvulnerability marketg5] is a reasonable proxy to estimating risks, . . -
9 y £ proxy 4 the long run. It is also important for the cyber-insurer tamknhow

and in turn helping manage risks better. However, there ar@in ethical
issues that needs to be resolved in order to properly desigim markets. As
a result vulnerability markets are not that popular and are-competitive in 3A statistical survey reveals that approximately 84% of nmé¢ users in
nature. 2011 are currently adopting Windows OS platforms compawe2D#6 in 2003.
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fast would its clients settle into an invariant willingnessiue. The
existence of willingness invariance and the sBestdwhich it could
be achieved in turn depends on the network structure. Westiigege
on this important aspect in our paper. It is also intuitivatth cyber-
insurer would want to incentivize (through its contractsjtain of its
clients who are instrumental in the process of OS switchinghis

regard we investigate theoretical properties of network$gpable to
cyber-insurers, as well as mathematically identify usbet have a
significant impact on the process of OS switching.

C. Our Contributions

In this paper, we answer the following important question(§) -
how can we effectively model the OS platform switching pas®
(See Section 11.), (i) can we comment on how fast a distebut
network of users would reach willingness invariance, ikises?, for a
given network, what are the upper bounds in the long run a¥iddal

have the inclination to use Unix-based OSs but do not useét du
to factors like confidence of operation, and incomplete rimf&@tion
on Unix/Linux application support. We assume tha{) lies in the
interval [0,1]. A user already adopting an Unix-based OS has a
willingness value of 1. Each user in the distributed netwapklates
his willingness values over time by interacting with his pegia
an acquaintance networKAN), which is an overlay network on
top of the physical distributed network. The interactiormsild be
through mutual physical contact or through online commatia, or
both. We assume here that the acquaintance network anditiad in
willingness values are known to the entity that takes dension
cyber-insurance contracts. It could be a cyber-insuragea@y, the
government, or other policy makers.

We use the asynchronous continuous-time modéllin [8] tcessprt
interactions between users in the AN. In particular, eaeh umeracts
with other users at instances defined by a Poisson proceageddime,

user willingness to adopt secure OSs? what are the thealretifddependendf other users. Equivalently, interaction instances acros

properties of networks a cyber-insurer prefers to insureethaon
willingness convergence speed and willingness upper Euiifiee
Section 1l1.), and (iv) how could a cyber-insurer incertfreward a
client based on his topological location? (See Section IV.)

Through our contributions we mathematically prove that becy
insurer should prefer to insure networks where users oragednave
a high willingness to adopt secure OSs, and that the instneuld
reward each user (via insurance contracts) in proportisghéompact
they have on the average willingness degree of the wholeanktw
Doing so would correlate to better self-defense investmbmgtusers,
alleviating information asymmetry, in turn leading to sessful
cyber-insurance markets.

Il. GOSSIPBASED SWITCHING MODEL

In this section we propose a gossip-based switching model th

captures the dynamics of OS platform switching in a distedu
communication network. We first describe the model envirenim
and follow it up with the description of our assumptions. \Wert
mathematically capture the evolution of OS switching ansbrugers
in the network. Finally, we study the convergence of the dcliitg
process.

Why a gossip-model?/e adopt a gossip-based model because wh
it comes to embracing OSs, general Internet users tend yoorel
public opinion to a considerable extent before decidingnugn OS
to adopt for long term use. In this regard, there are sociatagpon
and social influence models in theory as well, but we leave i t
later discussion (See Section V) of why we choose a gosspeba
model over others.

A. Model Environment

We consider a distributed communication netlfodonsisting of
n users. Each user addpteither a popular Windows operating
systems (ex., XP, Vista), or one of Unix-based OSs such asxLin
MacOS, etc. as his primdhcomputing platform. Irrespective of his
adopted OS, each usghas a particulainitial willingnessw;(0) e R
towards adopting a Unix-based operating system for the qsegp

of computingl. This assumption is valid as many Windows users

4Why is the speed factor important? - because a high speedianva
settlement implies the practicality of designing appratericyber-insurance
schemes. On the other hand if the invariant settlement tsrlarge, it may
contribute to the infeasibility of insurance schemes.

5The network could be the Internet or any other network hawrdecen-
tralized communication system. However, from a cyber+iasoe perspective,
the network would most likely be the Internet or a part of it.

SWe assume here that a user has only one computing device.

7A user might have partitions on his computing device to storgtiple
OSs.

8We emphasize here that our decision to consider Unix-basgd &
latently more secure OSs than Windows OSs arise from they stufb].

all users occur according to a rate Poisson process at times,
r > 1. In order to entail simplicity of visualizing user interamts,
there aren time slots per absolute timé&l[8], where each time slot
r is of the discrete fornit,,¢,+1). There is at most one meeting
(interaction) instance per time slot, and therefore on ayerthere
aren interaction instances per absolute time.

Regarding an interaction, usémeets (interacts with) userwith
probabilityp; ;. Upon interaction, userisand;j update their individual
willingness according to the following three possibilitie

1) Each user updates his willingness as the average of elaetisot
pre-meeting willingness as per the following relation.

wi(r) +w;(r)
2

In this case usersand; areregular with respect to each other.
The probability of this type of meeting happening betweéen
andj is yij.

Userj influences usei, in which case for somée (0, 1,
individual user willingness changes as per the followinig-re
tions.

wi(r+1) =w;(r+1)=

2)

wi(r 4+ 1) = dw;(r) + (1 — 0)w;(r).
en wy(r + 1) = w;(r).
In this case usey is considered as amfluential user who
influences: towards adopting his preferred OS, but himself
does not change his viewpdtfit The probability of this type
of meeting happening betweenand j is z;;. Examples of
influential users include security experts, commercialanig
zations promoting a certain OS, etc.,
Neither: nor j change their opinions on interaction, which
imply the following.

3)

wi(r 4+ 1) = wi(r).
wj(r+1) = w;(r).

In this case usersandj are said to bgersistentwith respect

to each other. The probability of this type of meeting hajipgn
betweeri andj is z;;, wherez;; =1 — x5 — yij.

Important Note:The entire analysis in this paper is related to the
acquaintance network. Thus, when we speak of the right mktao
cyber-insurer is willing to target, we are referring to tight AN. The

AN is also a distributed communication network but an oyedae.

The results of our analysis on ANs can be mapped to the physica

9For a value of%, 1 perceives;j as a regular user.

10An analogous example would be of a mobile operator promadirigpe
of phone to its clients, i.e., it provides service on a patéc phone type (
ex., say phones with Android OSs) and tries to influence pialeclients to
buy phones of the corresponding type.
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distributed network, i.e., the insurer prefers to insusecltents if the
client AN graph satisfies certain properties, and it als@imivizes
certain clients based on their topological position in thd. A

B. Assumptions
r We make the following assumptions in this paper.
1) pii = 0Vi, pij > 0Vi, j, and "7, pij = Vi.
2) The acquaintance networkN = (V, E) is strongly con-

nected, i.e., for alt, j ¢ V, there exists a path connectingnd
j. Alink (a,b) in set £ gets formed if and only ifpqs > 0.

This assumption implies that each user is socially acclessi
to any other user in the acquaintance network possibly girou
multiple links. In this regard let = max;,;.vd;; denote the

maximum shortest path length between anye V.
3)

views based on social influence.

C. The Evolution of User Willingness

We consider a vectow(r) = (w1 (r), ........ , wn(r)) denoting the
vector of user willingness for Unix-based OSs at time sloEhe user
willingness in time slot + 1 is updated according to the following

equation.
w(r+1) = W(r)w(r), )

where W (r) is stochastic random matfik for all » given by the
following

Xi;=1-— (Eifej)(;ifej)T W.p.pijyij7
W(r)= Y1,;,=1—-(1-0)ei(e; — ej)T W-p-pij’r:ij 7 (2)

. Pij%ij
Zij =1 WpinuL7

for all i,5¢V, wheree; is an n-dimensional vector with a 1 in
positioni and zeros in other locations? is the transpose of vector and

e. The equation implies tha// (r) is a stochastic matiff for all
r and is also independent and identically distributed overaWe
now introduce transition matriceB of the following form.

U(r,s) =W(r)W(r—1)ceeeene W(s+1)W(s),Vr,s,r > s.

®3)
We can rewrite Equation 1 using transition matrices in tHiféng
manner.

n

wi(r+1) =Y _[¥(r,s)]ijw;(s).

j=1

(4)

SinceW (r) is a random variable, we have
E[W(r)] =W, ¥r >0, (5)

where W is the mean acquaintance matrix. We can whiteas

- 1
W = n sz‘j [yij Xij + i Yig + 2351 ] )

%)
or

W:

SRS

1
> pig[(1 = 2i5) Xij + 2051] + -~ > pimi[Yiy — Xig).
i i3
We can expres$l asW = K + L, where

1
K= > (1= 2i5) Xag + 25 1].

%)

For all (7, j) e E in AN, x5 + y;; > 0. This assumption states
that irrespective of the type of user, each user gets infeen
by some of his acquaintances. This assumption is realistic
even experts and organizations are prone to changing thgjr

and 1
L=~ > piwig[Yij — Xig)-
i

We note that” only depends on the user meeting probabilifigsof
users and the probabilities; denoting the likelihood of two users,
persistent relative to each other, meeting. THis;an be considered
as asocial matrixrepresenting underlying social interactions amongst
users, where the matrix is symmetric and doubly stochastic.both
the row sums and column sums of the matrix sum to 1. This ptpper
Blvould be useful in considering” as a Markov chain while analyzing
our model. The matrixl on the other hand can be thought of as
representing the influence structure because it inclugesmtluencing
probabilities z;;S and y;;S. L can be thought of as amfluence
matrix that incorporates information about which users and links a
influential and regularWWe emphasize here that both and L are
ased on the dynamics of social interactions on the AN.

Convergence of User Willingness

In this section we study the convergence of the OS platform
switching process. We show that despite the presence ofiifal
users existing in an acquaintance network, each with diffeinitial
willingness values, every user willingness value converge a
single common value in the long run. This implies that ultiaha
every user has the same willingness to switch to a secure. OS/s
Note that thisdoes not mearthat in the long-run every user will
switch to a secure OS. We state the following theorems tolilgigth
our results on willingness convergence. The proofs of tle@rms
are presented in the Appendix.

Theorem 1. The user willingness sequenée;(r)} converges to a
common willingness valu@, such that

limrsow;(r) = w, Vie V,w.p.1

n

W= muw;(0), Y m =11 >0Yj
j=1

j=1

wherew is a limiting random variable.

Theorem ImplicationsThe Internet users in the long run reach a
common agreement regarding the willingness to adopt a e€o6y,
i.e., each user has the same value of willingness to adoptresec
0OSs. The theorem result is interesting and counter-imeiti but
makes sense in the light of the assumption that even persiste
agents are prone to changing their willingness under infeeof
social interactions. Thus, in the long run each user williegs
converges to a single random variable taking up a commorevéiu

is evident that higher the common value, more preferabledbmes
for a cyber-insurer to insure its clients. The common valapeshds
on the order in which user acquaintances have taken plads. Th
leads us to investigating the expected value of the randamblae,
and that is what we accomplish via the next theorem.

Theorem 2. Let w be the limiting random variable of the
willingness sequencegw;(r)}, Vie V. We have

, ® = Eln].

=T

. =k
lim, o W™ = e

and N
Elw] = Z 7w (0) = 7 w(0),

- MW(r) is a matrix induced by the acquaintance network and the user'3t is strange to believe that each user will have the sameéngiless in
interactions on it, for time slot. The expression fobV (r) can be derived the long run given that each might start the evolution preagith widely

by applying simple concepts fromandom matrix theory
127 stochastic matrix has each of its rows sum to 1.

varying willingness values. It seems more likely that thexaild be a cluster
of users having different willingness values.
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wheree is the vector of all ones, and is the stationary distribution (b)

w.rt. mean acquaintance matriv’. Lo .
E[w — — J(0)] < ——
Blo - 2 3wl < 1

Y w©)le (20)

> i PiiTi
Theorem Implications:We note here thatt is the stationary n
distribution indicating the weight given to each user ireafing the
expected value of common converged value of willingnesss Th
weight can be considered as a measure of the influence of e&ch ttheorem 4. Let 7 denote the stationary distribution related

on the average willingness in the long run. We will discussrenoto the common converged value of user willingness. Then the

on user influence in subsequent sections, and its implitatio
cyber-insurance. An interesting thing to note is that in #fwsence
of influential users;x;; is zero for alli and j, and as a result the
average value ofv;(r) remains constant in each time slgtand is
equal to the average of the initial user willingness, andheaser
has the same amount of influence. The stationary distributichis
case is an-dimensional vector where each eIement}—Lis

I1l. WILLINGNESS BOUNDS AND ITSIMPORTANCE TO
CYBER-INSURERS

In the previous section, we showed that users in a networ
converge to a common willingness value in the long run. Irs thi

section we derive theoretical bounds on the performance $f
switching in Internet-like distributed systems. We defieefprmance
as an average function of the converged value of individsar u
willingness. In this regard we study hofast a network of users
converge to a common willingness value, and what are theeptiep
of networks based on the speed of convergence and the vathe of
performance functionOur study in this section paves the way fo
cyber-insurers to make decisions on designing appropriaiatracts
for clients in different types of networks.

A. Performance Function
We adopt the following performance functidp in this paper.

P@) = Blw 1] = Bfa] =y = Y (7 — 1)wi(0),
eV

@)

where

=23 wi(0). (®)
i=1

Interpretation of Performance Functiorthe performance function
measures the deviation of the common converged willingnekse
from the average of the initial user willingness values. Té#onale
behind using such a function is the fact that we want to comgiae
limits of user influence by influential users with that whenimituen-
tial users in the network are present. An important signifbeaof the
performance function is the impact of the presence of infiaknsers
in the network, which in turn correlates to the impact of uidiial
user contributions to the common converged value. We wiltst
more about individual influence contributions in Section &d its
implications on cyber-insurance contracts.

We state the following two theorems in relation to evalugtin
upper bounds of user willingness. The proofs of the theorarasn
the Appendix.

Theorem 3. (a) Let & denote the stationary distribution related to
the common converged value of user willingness. Then tlenioly
relation holds.

> i, PijTij
b

1
<
1 2n ©)

_ 1
7 = —elloe <
-p

wherep is a constant equallingl — n\Ifld)i, and U1 is given by
the following
1}

1—Zji

2

2

. 1 1
V1 = ming jee {ﬁ [pi; + pji

following relation holds.

1
<
-1 —/\Q(K)

! 1 I > i PiiTij
™ — —€
n 2

I

(11)
n

where X2 (K) is the largest eigenvalue of the matri.

Implications of Theorems 3 and 4We jointly provide the
implications of the two theorems as they are quite inteteela
with each other. First, the two theorems providigper boundson
our performance function. Second, the theorem charaeterihe
[Kriation of the stationary distribution in terms of (W
hich is the average influence by influential users, andXii)K),
e second largest eigenvalue of the social malkfixlt is common
knowledge that the termh — A2 (K) is the spectral gap of a matrix
[Q] and controls the rate of convergence of the Markov chadluced
by matrix K{*] to its stationary distributior®. In theory, the larger
the spectral gap, faster does powers of a Markov chain cgevier
Ijts stationary distribution. A fast converging Markov ahas called
fast-mixing Now Theorem 4 states that for a fast-mixing Markov
chain induced by the social matrix, it would fast convergethe
average of the initial willingness of individual users,. i which in
turn implies that the impact of influential users on othemmel™
users would be negligible with respect to making them adeptie
OSs. This is intuitive because in a fast-mixing graph (Markbain)
there are several connections between any pair of usershisn t
regard, consider an influential user who is influenced by sother
users in the network. These users are in turn connected & oth
users in the network due to the fast-mixing property of thapbr
Assuming that the number of non-influential users are muelatgr
in number than influential users, the common convergedngiiess
value for all users in a fast-mixing graph is the average dfain
individual user willingnessThus, a cyber-insurer would NOT prefer
to insure its clients that form a fast-mixing social graphR Ghey
would like to insure the users via a different type of cylmsurance
contract than what they plan for users in a slow-mixing graph

In a slow mixing graph (Markov chain) there is a high degree
of clustering of influential users and these users get tidiueénce
from mostly regular users whom they have already influenoethe
past. Due to the loosely connected clusters, the influeagiahts will
spread their influence widely before they get feedback freersithey
already influenced in the past. As a result the commonly acged
willingness value will be much closer to the mean willingnesf
influential users.Thus, a cyber-insurer would prefer to insure its
clients that form a network inducing a slow-mixing Markowaich
on its social graph.

IV. ON PROPORTIONALLY INCENTIVIZING CLIENTS

In this section we focus on individual client effects on tioenenon
converged willingness value. The individual impacts pdevicyber-
insurers with ways to incentivize clients differently bdsen their
amount of impact on the network performance function. Is gaper
we measure the impact of each individual user via the exioress

l4gince K is a stochastic matrix, it can be considered as a transitiaimixn
of Markov chain.

15Here the term ‘network’ implies the acquaintance networkspecific it
refers to the network induced by the social matfix which is formed by
user acquaintance dynamics on the AN.
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7 — 1. The termZ comes from the average of all initial individual B. Class Il Graphs

willingness and through individual impact we measure thaadi®n We deal with graphs induced by where there exists links
from the average of long-run individual willingness. Theentives penyveen influencers and the influencees, which when remavoed f
would most likely be in the form ofifferential cyber-insurance e graph disconnects the graph. In this regard, we provige o
contractswith lesser premiums charged to network users who have&sit on the amount of individual user impact in the form loé t

greater impact on the value of the network performance fancin  fiowing theorem. The proof of the theorem is mentioned lie t
this section we divide our analysis of individual impactoitthree  Appendix.

parts based on the effect of influential edges (between theeircer

and the influencee) on graph connectivity: in the first partemsider Theorem 6. Let 7 denote the stationary distribution related
general graphs induced by the social matrix where there may g the common converged value of user willingness. Let there
may not be edges that are formed between an influencer and € edge (i, j) in the graph induced byX such thatz;; > 0.

influencee - we term these graphs(ass | graphsin the second part Assyming that removingi, j) from the graph would disconnect it,
we consider graphs induced by a social matrix where edgesefbr e following relation holds for all usek:.

between influential users and their influencees are negefmathe
graph to be connected - we term these grapiSlass Il graphsand 1 2 pii (1 — 6) Q5 (k), (13)
] ’

finally we consider graphs in which edges formed betweenéntial FTn T n1o Bd (14 28)|IN (G, 5)| — IN(5,1)])

users and influencees are not necessary for the graph to beated

- we term these graphs &ass Il graphs By the term ‘graphs’ we where DijTij

imply graphs induced by the social matdi%, which in turn is formed Hij = pis(1— 2i;) + pyi(1 — 2;1)

via user interactions on the AN. Our analysis is heavily Hageon

the concept of mean first passage times in the theory of Markafd

chains.The rationale behind adopting this concept is that the impac ;.\ _ o NN T . o

of opinions is dependent on the social distance betweers,uaad g (k) = [N G, )l ke NG, 8); s (k) = =IN (G, D), ke N, ),

the passage times reflect the speed with which opinions resets where N(i,) and N(j,4) are two disjoint sets of nodes on the
separated by certain social distances. removal of edgdi, j) from the graph.

A. Class | Graphs Theorem Implications:The theorem implies that if there is a
single influential edge between two user clusters, then niygact
General graphs are induced By, with the condition that there of each user within the same clusters, on the network petfoce
are no constraints on the presence of links between the mufie function, are equal. Intuitively, all users in a cluster imieh there
and the influencee. We provide our result on the amount ofidgial  is the influential user will in the long run shape the willirmgs of
user impact in the form of the following theorem. The proofteé  the influential user through their individual impacts, andpsisingly
theorem is mentioned in the Appendix. it is the same amount of impact for all the users irrespectifie
whether the user is directly connected to the influentiat.uBkis is
Theorem 5. Let 7 denote the stationary distribution relatedbecause in the limiting distribution, the common convergetlie
to the common converged value of user willingness. Then tll impact the willingness value of the influential user,dasince

following relation holds for every usek. there is only one such influential user, the impact of all othe
1 1 non-influential users are the same.
TN T 2 Zp”wi" (1 =20)7 +piy) (mix =mar), (12) ¢ Class Il Graphs
i

We deal with graphs induced by where there exist links

wherem,;. and m;, are the mean first passage tiffeérom i to k between influencers and the influencees, which when remowved f
and j to k respectively, in the Markov chain induced B the graph need not necessarily disconnect the graph. Irrebard,

we provide our result on the amount of individual user impatthe
Theorem Implications: The theorem provides an exact closedetwork performance function in the form of the followingetem.
form expression for the impact of a uséron the value of the The proof of the theorem is mentioned in the Appendix.
network performance function in terms of the mean first pgessa ) o
times from k to the influential and influenced users. To providdheorem 7. Let 7 denote the stationary distribution related
an intuition, consider a single eddg, i) between influencej and t0 the common converged value of user willingness. Then the
influenceei. Thus, fork # {j,i}, its influence could be indirect following relation holds for all uset.
on the willingness ofj. In this regardm;. represents the distance 1 2pi;wi; 1+ logn
between;j and k and enters negatively into Equation 12. On the I = ~| < > T(T)v (14)
other hand any user who meets with usewith a high probability i,
would be influenced indirectly by. Thus, the impact of uset on  \yhere 4 is the conductance of the Markov chain with transition
the performance function would be increasingring, i.e., when atrix given byK
m;y, 1S smallk has negative impact as he is very closed to influencerﬁ '
agenti, whereas whem: ;;, is smallk will have a positive impact on
the performance function as his opinions would be quicklgoabed
by j. The theorem generalizes our intention to multiple links
the form (j,4). In the case of the absence any links of the form
(influencer, influencee), the impact bfis zero.

Implications of Theorem 7:The conductance of a Markov
o?hain [9] is defined as follows.

y Q(A, A°)
VA S (A

where Q(A, A%) = >, 4 icae TiKij, andw(A) = >, 4 m. The
1°The mean first passage time from node node; in a Markov chain  conductance resembles the minimum probability that a Meadkin
having transition probability matri¥ is given asm;; and equals——+,  goes from a state inl to a state inA. Thus, the conductance is an
whereY = 5°2° (K% — K°) [9] is the fundamental matrix of the Markov appropriate measure of the mixing time of the graph indugesbiial
chain induced byK. matrix K. Greater the conductance value, the more connected is the

(15)
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graph. The theorem gives the expression for the upper bofitfieo
individual impact on the performance function for Classdibphs.
It is evident that greater the conductance the impact dsesedue
to the graph getting better connected.

V. RELATED WORK

In this section, we briefly describe related work as appledb
our paper. We compare our work with three different researelas
suited to influencing Internet users to adopt Unix-based, O&s

B. Diffusion of Ideas

Models from the theory of diffusion have been used in exgstin
literature to model and explain the dynamics of adoption efvn
ideas in a social network. In some basic models [14][45], exr'sis
decision to adopt a new idea is based on the decisions ofighlmars
in the social graph. These models follow the principle thatsar
adopts a new idea only if a certain number of its neighborshen t
social graph adopt the new idea, where individual user tmds
are assumed to be homogenous across the users. In a different

influence maximizatigrdiffusion of ideasandcascading effects due type of a diffusion model introduced if [L5][35], the usemopt

to cyber-insurance adoption

A. Influence Maximization

The problem of OS platform switching bears some resemblan

to the problem of influence maximization in social networksen
though it is different than influence maximization probleifhe
latter problem was first studied by Domingos and Richardson

[13], where a social network of potential customers of a retrk
product is modeled as a Markov random field, and probaluilist

techniques are used to find those customers to target toftmtigé
viral marketingf]
study influence maximization in social networks via the daling
algorithmic problem - given a social network graph and infles

probabilities on each edge, how do we select a small set dbélini

users so as to maximize the set of users who get influencedad-he

thors model the problem as a discrete optimization problssaming
suitable models of information diffusih They prove the problem

to be NP-Hard and propose constant factor greedy approj@mal

algorithms based on submodular functions|[17] that find thigal
set that guarantee a solution that is within 63% of the ogtifiae
authors also show that their algorithms out-perform nagleegion
heuristics based on the conceptsdegree centralityand distance

centrality used in social network analysis. Following up on the wor

by Kempe et.al., several works [10]]11]]112][26]132] havedaessed
the algorithmic version of the influence maximization peshl and
bettered the greedy algorithm proposed(inl [24].

Drawbacks of existing solutionsThe related works on influence

maximization are mainly targeted towards waysffectivelymarket
new products/novel ideas developed by an organization. l@n
other hand, our paper formulates the basem-step using which
ways to effectively market cyber-insurance adoption cadésggned.
However, the existing works have the following implemeiitgb
drawbacks on parameters common to our work: (1) they onlyrass
an influence value for each neighbor of a user and use thentiices

model to judge whether a user would adopt an OS, but the warks d
nottheoreticallymodel the time (dynamics of the influence process) |F1t

takes for users to reach willingness convergence. We mbddime
dynamics in this paper as a stochastic process. The anhbigis the
cyber-insurer have an idea regarding the time feasibilitgdoption,
and (2) The influence of each potential product user on highheirs
in the social graph is assumed to be known to the organizafiois
is certainly not the case in reality and also in the case of 3
(a potential cyber-insurance agency) willing to indulge dtients in
using Unix-based OSs. An ISP may at best know the social dsaph
not the individual influence degree. Thus, the system moaglgqsed
in [24] and subsequent related works in order to achieve enfie
maximization, is not implementation realiffic

17viral marketing is a marketing technique used by comparigsromote
the cascading of new products or innovative ideas. The tgahnexploits
the network value of customers in order to cascade the amomtf new
ideas/products.

18The paper considers thidnear Threshold Modehnd thelndependent
Cascade Modebf diffusion.

19An ISP could design efficient incentive-compatible gamestietic mech-
anisms to enable users to willingly and truthfully confidetie ISP their
influence values on social contacts, but users might therseiot have a
clear idea of the influence values in the first place.

. In a seminal piece of work, Kempe et.dl. [24]

a new idea where the threshold value is a function of the payof
of a coordination gameln a recent work[[28], the author uses the
coordination game model to analyze the spread of new befsavio
ftfa random social graph and show the following: (1) When the
social network is sufficiently sparse, the contagion is tiaiby the
low connectivity of the network; when it is sufficiently densthe
bontagion is limited by the stability of the high-degree esdThis
henomenon explains why contagion is possible only in angive
ange of the global connectivity, (2) When contagion is paes
both in the low and high-connectivity cases, the number wbtaF]
players is low, resulting in rare occurences of cascadeweMer in
the high-connectivity case, the system displays a robeistragile
quality: while the cascades are very rare, their sizes ang lagge.
This feature makes global contagions exceptionally haahtipate,
and (3) When the initial number of adopters of a new idea is
small, the idea spreads for low global-connectivity, whsaréigh
lobal connectivity inhibits global contagion, but onceécurs, the
onnectivity facilitates spread.

Drawbacks of existing solutiong’he models in[[14][45] assume
homogenous adoption thresholds for individual users. heweén
reality, each user has different threshBlde regard to the models

ased on the coordination game, each one of them assume equal
gayoffs for all users for adopting a given choice. Howevendality

each user is most likely to have different payoffs for adupta
given choice. In addition, the models assume a zero payoff fo
two users when they coordinate and find that each has a differe
adoption choice. This again is unrealistic as each user & tilely

to have an increase/decrease in his payoff on coordinaéisalting

fin contradictory opinions, rather than him landing dirgaih a zero

payoff. The work in[[28] base its analyses and results on daan
social graph. However, random graphs hardly represent eaiylife
phenomena.

C. Cascading Effects Due to Cyber-Insurance

Lelarge and Bolot in[[30] have modeled the dynamics of the
ernet users investing in self-defense, and shown thdierey
insurance incentivizes Internet users to optimally investself-
defense investments and helps cause a self-defense caseade
incentivizing a certain number of Internet users to investself-
defense causes all the Internet users to invest in selfisefein
turn increasing overall network security. In deriving thedsults, the
authors in [[30] account for the ‘externality’ factor and tHeee-
riding’ problem related to user security investments,, isacurity
investments by a user's neighbors generates a positivenekitg
for the user, and might result in the user investing subragiti in
self-defense. To prove the occurrence of a self-defenseadas the
authors use utility-theoretic comparisons to show moreefieto a
user due to him optimally investing in self-defense mecérasi when
compared to him not investing optimally.

Drawbacks of the existing solutiomhe authors analyze random
graphs and base their results on such graphs, which do netsesg
real-life phenomena. In our work, we address arbitrary lgsa@ther

2the largest component of players requiring a single neighbahange
strategy in order to follow the change.

21The Linear threshold model and the Independent cascade | ndode
account for heterogenous thresholds.
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than graphs of any special kind. In addition, they repregbst
Internet topology as a random graph, which is proven not tohbe
case [[16]. However, it is not realistic to assume that theawiag
phenomenon as mentioned [n [30] is the way cascading mightroc
in the Internet. This is because the modellin| [30] does nanglel
facets of human behavior (influence, coordination) thatimgortant
for practically achieving cascades and (ii) account for fidnet that
a node neighbor (In the Internet topology graph) may not eave
social relationship with the node to share influence on tleéofeof
investing in self-defense.

(1]
(2]
(3]
(4]
(5]

D. Difference Between Our Problem and Existing Works ¢,

Most related works study new-idea cascades as some form of a
‘diffusion of adoption’ problem. In our work, we solve a pitem [7]
similar to the diffusion problem in [30]. However, we do ndma
to study “diffusion of adoption” as in_[30] and other relategrks, (8]
but investigate the “diffusion of willingness” problem lzese of the
following two reasons: [9]

[10]

« In reality, the decision of whether an Internet usevill switch
his OS depends on the evolution @ change willingnesga
psychological factor)over time. Higher the willingness of a 1
user to change his OS in the long-run, greater are his chanéeé
of actually doing so. The willingness is driven by individiua[lz]
factors such as ease of OS use, application support, etc., as
well as influences from social contacts. The modellin [30] ig3]
not practical, specifically in the case of switching OSs bsea
it is simply may notbe the case that a user changes OS [t4]
majority of his neighbors in the social graph use a diffel@ft
than he uses; the user's willingness to change OS also depeH¢!
on the influence that these neighbors (and possibly some n?{"l?-]
neighbors) exert and his own personal want. As an example,-i
may well be the case that all of a Windows user’s neighbors u
Unix-based OSs but the user is stubborn enough to not being;
influenced by any of his neighbors. Our assumptions provide a
explanation of why the rate of users changing from Windows 9]
Unix-based OSs today, is so slow - the fact is that some users
just do not want to stop using the Windows OS.

« By solving the “diffusion of willingness” problem via reling  [20]
some impractical modeling and topological assumptionsemad
in [30] and [28], we plan to answer the following importanizll
question:Is there hope to mitigate the information asymmetr
problem in cyber-insurance through platform switching,dan
thus enable the successful existence of cyber-insurandeetsa  [2]

VI. CONCLUSION (23]
In this paper, we argue in favor of OS platform switching @ods [24]
secure OSs) to be a way to enforce successful cyber-inguranc
markets. In this regard we have studied the dynamics of the
switching process amongst users in an acquaintance netwabikh
is an overlay network over a physical distributed commuitica (26]
network. Our analysis heavily relied on the theory of Marktains. 27]
We found that cyber-insurers would prefer to insure useis sow-
mixing social graph due to high performance on such graphs. w.[2g
final averaged willingness of users to adopt secure OSs. d3tr f
mixing graphs, the cyber-insurers would have to designraoty via
effective mechanism design to entail successful markets. ai§o
proved upper bounds on the performance function in a giverako [30]
graph induced by an acquaintance network. We showed thapiber
bound is higher in case of slow-mixing graphs when compaced Bl
high-mixing graphs. Finally, we computed exact expressifum the (32]
impact of each individual user in an acquaintance networtherfinal
converged value of willingness of users. Based on the impaicte
the cyber-insurer would differentiate contracts, chaggimexpensive
premiums for high impact users and higher premiums for lowaaot
users.

[29]

(33]

[34]
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VII. APPENDIX

B. Schneier.Secrets and Lies: Digital Security in a Networked World

Proof of Theorem 3.For the first part of the theorem we can
start by using a result from peturbation theory in Markovickao
the difference betweebarm and %e. According to the result, the
following holds.

-1 .7

(pi— —e)

whereY as mentioned previously is the fundamental matrix/of
The equation further evaluates to

%eTLY(I — ), (20)

1
7 = —ellec <[ILY |l (21)

We now find an upper bound fOILY ||, whereLY = "> | LK".
From the linear update rule we have for anyR"™, LK"a(0)

La(r) for all ». Thus, the following relation is achieved.

T 1 (%)
LK CL(O) = E Zpijxija J(T),
¥

(22)

where a¥ (r) is equal toY'1;; — X;;]a(r), Vi,5,k > 0. Now we
have

In this section we provide proofs of the theorems stated & th

paper.

Proof of Theorem 1.Let M(r) mazievw;(r) and let
m(r) = min;evw;(r). For anyr > 0 we obtain the following

E[M(r) —m(r)] < [C(M(0) —m(0))],

(16)

ni\n ne\n
)+ )T -

limy 0o M(r) —m(r) =0, w.p.1l.

nnd

whereC = [1 — ( S )]LIEEJ. This implies

that

The stochasticity of matri¥¥ (r) implies that sequence§M (r)}

and {m(r)} are bounded and monotone and therefore converges to

the same limitw. Thus,lim,ccw;(r) = w. Now let s = 0. Thus,
for all 7 we have

n

> [ (r —1,0)]55w;(0),Vr > 0

%)

w; (1) (17)

Now for any initial willingness vectotw(0), the limit lim, - ccw; ()
exists and is independent of. Thus, for any h, the limit
limyoo[¥(r — 1,0)];n exists and is independent @éf Denoting

T 1 T
IILE"a(0)]|e < %(szjwu)p (M(0) —=m(0)).  (23)
iJ
Since M (0) — m(0) < 1, we have
1LY a(0)]|. < 2200 (24)
2n(1 - p)
We thus get
7= Lol < 2 2o Pidij
n 1—0p 2n

For the second part of the theorem, we hadvies] = piw(0). This
implies the following.

n

Bl = >~ w(o)

i=1

_ 1 _ 1
= |7TTU)(0)—g€Tw(0)| < 7= —elloo[[w(0)]|co-

(25)

This equation in conjunction with the result in the first paftthe
theorem proves the theoreill.

Proof of Theorem 4We know that
_ 1
Iz = —ell2 < |ILY|l2. (26)

We focus on finding the upper bound PLY ||2. Let a(0) e R™ be

this limit as 7, and using above equations we prove the secord initial vector with|[a(0)[]2 = 1 and let there be the following

part of our theorem resulll

Proof of Theorem 2.The first part of the theorem follows
from Theorem 4.1.4 in [23]. For the second part of the theoven
have for allr >0

w(r) = ¥(r —1,0)w(0).

Sincew(r) — we in the limiting case ofr being co, we have the
following result in the light of the Lebesgue Dominated Cergence
Theorem [[47].

Elwe] = Ellimk—ocw(r)] = limr o0 E[w(r)].

(18)

Under the assumption that matricd¥ () are independent and
identically distributed over alf, we have
Elwe] = limr— o E[¥(r — 1,0)w(0)] = lim, oW (0), (19)

which in turn impliesE[w] = 77 w(0), thus proving the theorenl

sequence
a(r+1) = Kz(r)Vr > 0.

Then for all» we have the following equation.

kq(0) = L i
LK"a(0) = - Z;p”:r”a (r) (27)

The upper bound of|a™ (r)||3 is computed as|a(r) — ae||3. Now
note thata(r) — ae is orthogonal toe, which is the eigen vector

corresponding to the largest eigenvalie = 1 of matrix K. Thus
we have the following relation.

lla(r) = aell3]| < (A2(K)*)"[|a(0) — aellz < A2(K)*",  (28)

where \2(K) is the second largest eigenvalue of matfix Thus,
[la® (r)|]2 < A2(K)", Vr > 0. Using the result of the fundamental
matrix Y, we get

1

22 Piiij
1= o (K) ’

<
LY a(0)]]: < z

(29)
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for any vectora(0) with ||a(0)||z = 1. Combining this result with
Equation 16, we prove the theorel.

Proof of Theorem 5.Based on the Markov chain theory we
can write the individual impact of usér as

1 .

T~ — =7 L[Y]", (30)
where Y is the fundamental matrix of the Markov chain with
transition matrix X" and L equals - 3= pijzi;[Vi; — Xi;]. Now
L[Y] can be expressed as

(3 =) (Yjr — Yax) ifl=1,

1, :Z/,’L . .
[LIY]"] ij = (Ve — Yi) ifl=7j,
0 otherwise.
(31)
Thus, we have the following equation from the above relastips.
_ 1 1 _ _
Mo = — = 5> > pigas (1= 20)% + piy) (Yik — Yir) - (32)

i,
Substituting the value of;, — Yi, as - (mik —mjy) into the above
equation, we obtain our theorem result.

Proof of Theorem 6.Since K is a doubly stochastic matrix,
we havem;; = | ”‘ for every ke N(j, 1), mik — mjx = Maj.
Since (¢, ) is an |anuent|aI link we have for everge N(j,4) the
following relation

NG, _ 2n|N(i, j)|

Mik — Mg = = . (33
! Kij pii (1 = 2zij) + pji(1 — 251)
Similarly for everyk e N (7, j) we get
|N (4, 5)] 2n|N (i, j)|
e — . — — . . (39)
’ Kij pij (1 — 2i5) + pji(1 — 25)

Using the preceding relations we can express the relativanme
passage time as

2nfi;
PijTij

Now since(i, j) is the only influential link, we have

(k). (35)

Mik — Mjk =

1 02 pi(1—6)
T =~ = (ﬁ)wgm(k% (36)

where

DijTij
ij = =5 [(1+28)mi; — myi).
Combining the above results we prove Theorenll6.
Proof of Theorem 7For everyk we have
_ 1
|7 — E| 2n2 zj:pumu (1 =26)m; + pij) Imiw — myul
DijTij DijTij
< > #th —mjk| < Z #max{mihmﬁ}
Q¥ Q¥
Sincem;, < myj + mjr andmgr < my; + mar, We have
1 i Tid
e — | < 2]: %mw{mm +myi} 37)
Applying the following relation from[[2], i.e.,
4(1 4 logn)
maz; j{mi; + mji} < .
we get .
_ 1 2pijxi; 14+ logn
L — = < -/ (——). n
i — | < D0 TR ()

]
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