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Abstract—In recent years, researchers have proposedcyber-
insurance as a suitable risk-management technique for enhancing
security in Internet-like distributed systems. However, amongst
other factors, information asymmetry between the insurer and
the insured, and the inter-dependent and correlated natureof
cyber risks have contributed in a big way to the failure of cyber-
insurance markets. Security experts have argued in favor of
operating system (OS) platform switching (ex., from Windows
to Unix-based OSs) or secure OS adoption as being one of the
techniques that can potentially mitigate the problems posing a
challenge to successful cyber-insurance markets. In this regard
we model OS platform switching dynamics using asocial gossip
mechanism and study three important questions related to the
nature of the dynamics, for Internet-like distributed systems: (i)
which type of networks should cyber-insurers target for insur-
ing?, (ii) what are the bounds on the asymptotic performancelevel
of a network, where the performance parameter is an average
function of the long-run individual user willingness to adopt
secure OSs?, and (iii) how can cyber-insurers use the topological
information of their clients to incentivize/reward them during
offering contracts? Our analysis is important to a profit-minded
cyber-insurer, who wants to target the right network, design
optimal contracts to resolve information asymmetry problems,
and at the same time promote the increase of overall network
security through increasing secure OS adoption amongst users.
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I. I NTRODUCTION

The Internet has become a fundamental and an integral part of
our daily lives. Billions of people nowadays are using the Internet
for various types of applications. However, all these applications are
running on a network, that was built under assumptions, someof
which are no longer valid for today’s applications, e,g., that all users
on the Internet can be trusted and that there are no maliciouselements
propagating in the Internet. On the contrary, the infrastructure, the
users, and the services offered on the Internet today are allsubject
to a wide variety of risks. These risks include distributed denial of
service attacks, intrusions of various kinds, hacking, phishing, worms,
viruses, spams, etc. In order to counter the threats posed bythe risks,
Internet users1 have traditionally resorted to antivirus and anti-spam
softwares, firewalls, and other add-ons to reduce the likelihood of
being affected by threats. In practice, a large industry (companies
like Symantec, McAfee,etc.) as well as considerable research efforts
are currently centered around developing and deploying tools and
techniques to detect threats and anomalies in order to protect the
Internet infrastructure and its users from the negative impact of the
anomalies.

1The term ‘users’ may refer to both, individuals and organizations.

In the past one and half decade, risk protection techniques from a
variety of computer science fields such as cryptography, hardware
engineering, and software engineering have continually made im-
provements. Inspite of such improvements, recent articlesby Schneier
[41] and Anderson [3][4][5] have stated that it is impossible to
achieve a 100% Internet security protection. The authors attribute
this impossibility primarily to six reasons:

1) Existing technical solutions are not sound, i.e.,there do not
always exist fool-proof ways to detect and identify even well
dened threats; for example, even state of the art detectors of
port scanners and other known anomalies suffer from positive
rates of false positives and false negatives [21]. In addition,
the originators of threats, and the threats they produce, evolve
automatically in response to detection and mitigation solutions
being deployed, which makes it harder to detect and mitigate
evolving threat signatures and characteristics [46]. Other types
of damages caused by non-intentional users, such as denial
of service as a result of flash crowds, can be predicted
and alleviated to some extent but not eliminated completely.
Finally, completely eliminating risks would require the use of
formal methods to design provably secure systems - however,
these methods capture with difficulty the presence of those
messy humans, even non malicious humans, in the loop [36].

2) The Internet is a distributed system, where the system users
have divergent security interests and incentives, leadingto
the problem of ‘misaligned incentives’ amongst users. For
example, a rational Internet user might well spend $20 to stop a
virus trashing its hard disk, but would hardly have any incentive
to invest sufficient amounts in security solutions to prevent its
computer being used by an attacker for a service-denial attack
on a wealthy corporation like an Amazon or a Microsoft [44].
Thus, it is evident that the problem of misaligned incentives
can be resolved only if liabilities are assigned to parties (users)
that can best manage risk.

3) The risks faced by Internet users are often correlated and
interdependent. As a result a user taking protective actionin
an Internet like distributed system creates positive externalities
[27] for other networked users that in turn may discourage
them from making appropriate security investments, leading
to the ‘free-riding’ problem [18][19][34][37]. The free-riding
problem leads to suboptimal network security.

4) Network externalities due tolock-in and first-mover effects
[3] affect the adoption of technology. Katz and Shapiro [22]
have analyzed that externalities lead to the classic S-shaped
adoption curve, according to which slow early adoption gives
way to rapid deployment once the number of users reaches a
critical mass. The initial deployment is subject to user benefits
exceeding adoption costs, which occurs only if a minimum
number of users adopt a technology; so everyone might wait for
others to go first, and the technology never gets deployed. For
example, DNSSEC, and S-BGP are secure protocols that have
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been developed to better DNS and BGP in terms of security
performance. However, the challenge is getting them deployed
by providing sufficient internal benefits to adopting firms.

5) Measuring risks is a difficult proposition [40]. Risks cannot
be managed better or completely eliminated until they can be
measured better.

6) Many security software markets have aspects of alemons
market[1] or even worse, i.e., by looking at security software,
even the vendor does not know how secure its software is
[5]. So buyers have no reason to pay for more protection, and
vendors are disinclined to invest time, money, and effort to
strengthen their security software code.

In view of the above mentioned inevitable barriers to 100% risk
mitigation, the need arises for alternative methods of riskmanagement
in the Internet. Anderson and Moore [4] state that microeconomics,
game theory, and psychology will play as vital a role in effective
risk management in the modern and future Internet, as did the
mathematics of cryptography a quarter century ago. In this regard,
cyber-insuranceis a psycho-economic-driven risk-management tech-
nique, where risks are transferred to a third party, i.e., aninsurance
company, in return for a fee, i.e., theinsurance premium2. The
concept of cyber-insurance is growing in importance amongst security
engineers. The reason for this is three fold: 1) ideally, cyber-insurance
increases Internet user safety because the insured increases self-
defense as a rational response to the reduction in insurancepremium
[20][25][43][48]. This fact has also been mathematically proven by
the authors in [29][31], 2) in the IT industry, the mindset of‘absolute
protection’ is slowly changing with the realization that absolute
security is impossible and too expensive to even approach, while
adequate security is good enough to enable normal functions- the
rest of the risk that cannot be mitigated can be transferred to a third
party [33], and 3) cyber-insurance will lead to a market solution that
will be aligned with economic incentives of cyber-insurersand users
(individuals/organizations) - the cyber-insurers will earn profit from
appropriately pricing premiums, whereas users will seek tohedge
potential losses. In practice, users generally employ a simultaneous
combination of retaining, mitigating, and insuring risks [42].

A. Why Cyber-insurance Has Not Taken Off ?
Sufficient evidence exists in daily life (e.g., in the form ofauto and

health insurance) as well as in the academic literature (specifically
focused on cyber-insurance[20][25][29][31][43] that insurance-based
solutions are useful approaches to pursue,i.e., as a complement to
other security measures (e.g., anti-virus software). However, despite
all promises, current cyber-insurance markets are non-competitive,
specialized, and non-liquid. The inability of cyber-insurance in
becoming a common reality is due to a number of unresolved
research challenges as well as practical considerations. The most
prominent amongst them areinformation asymmetrybetween the
insurer and the insured, and the interdependent and correlated nature
of cyber-risks [6][7]. Information asymmetry has a significant effect
on most insurance environments, where typical considerations include
inability to distinguish between users of different (high and low
risk) types, i.e., theadverse selectionproblem, as well as users
undertaking actions that affect loss probability after theinsurance
contract is signed, i.e., themoral hazardproblem. However, there
are important aspects of information asymmetry that are particular
to cyber-insurance for distributed computing environments. These
include malicious users hiding information about their intentions and
anti-social behavior from their insurers, users lacking information
about other networked nodes, as well as insurers lacking information

2Runningvulnerability markets[5] is a reasonable proxy to estimating risks,
and in turn helping manage risks better. However, there are certain ethical
issues that needs to be resolved in order to properly design such markets. As
a result vulnerability markets are not that popular and are non-competitive in
nature.

about and not differentiating based on products (e.g., anti-virus
software) installed by users. In a recent article [6] show that even
under ideal conditions of independent and non-correlated cyber-risks,
an optimal cyber-insurance contract that accounts for the adverse
selection and the moral hazard problem,overpricesclient premiums,
in turn de-incentivizing clients to make cyber-insurance markets a
success. Thus, it is evident that market-based approaches to mitigate
the effects of information asymmetry will most likely fail to enable
market success under non-ideal conditions of interdependent and
correlated cyber-risks.

B. A Way Towards Successful Cyber-insurance Markets
Recently, researchers have argued in favor ofoperating system

(OS) platform switchingas one technique that could lead to successful
cyber-insurance markets in future [7]. A robust OS (ex., Linux based
OSs) has more built-in security and permission features than those
of its counterparts (ex., Windows) and generally puts its adopters
in a low risk category [7], thereby mitigating the adverse selection
problem. In addition, a widespread robust OS adoption by webusers
also reduces the magnitude of interdependent and correlated risks. As
far as the moral hazard problem is concerned, effective mechanism
design [38][39] will lead to optimal contracts where premiums will
seem to be fair to clients, thus promoting markets for cyber-insurance.

However, not all Internet users adopt the Linux-based OSs like
Unix BSD, Linux, and MacOS as their platform of computing. Sta-
tistically speaking, most naive Internet users around the world prefer
the Windows OS due to its ease of use and its support for myriads
of application softwares and web applications [3]. Interestingly, the
percentage of users adopting MacOS/Unix/Linux as their preferred
OS are increasing year after year(http://www.w3schools.com)3 This
trend implies that Internet users are slowly increasing their fondness
towards Unix-based OSs. There are three potential reasons for the
aforementioned user affinity:

• Various types of popular applications that were previouslynot
supported by Unix-based OSs are nowadays being supported by
the same with high ease of usability. For example, the highly
popular text editor,Microsoft Word, traditionally designed to
run on Windows now has a MacOS version which is very easy
to use.

• In addition to Unix-based OSs being more latently secure than
Windows and increasingly supporting user popular applications,
their GUIs are getting increasingly attractive and user friendly.

• Changing between ease of use OSs is a natural behavioral
process which poses few technical, behavioral, or economic
constraints on the user.

Thus, we qualitatively conclude that OS platform switching(ex., from
Windows to Unix-based OSs), or adopting secure OSs would enhance
overall network security and favor the success of cyber-insurance
markets, as it would mitigate the information asymmetry problem
and reduce the interdependence and correlation of distributed system
risks, without violating behavioral, economic, and policyconstraints
beyond a considerable extent.A thing to note here is that malicious
users would want to spend more efforts in breaking into Unix-based
OSs as soon as they start becoming popular, however there would
then be a new OS which would be significantly better than Unix-
based OSs in terms of latent security strength, thanks to parallel
research developments in the field of operating systems. Thus, we
firmly believe that irrespective of time, there would alwaysbe the
scope of adopting a more secure OS.

1) Research Motivation:With respect to OS switching dy-
namics it is evident that a cyber-insurer would prefer to insure a
network of users having high willingness to adopt secure OSsin
the long run. It is also important for the cyber-insurer to know how

3A statistical survey reveals that approximately 84% of Internet users in
2011 are currently adopting Windows OS platforms compared to 90% in 2003.

http://www.w3schools.com
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fast would its clients settle into an invariant willingnessvalue. The
existence of willingness invariance and the speed4 at which it could
be achieved in turn depends on the network structure. We investigate
on this important aspect in our paper. It is also intuitive that a cyber-
insurer would want to incentivize (through its contracts) certain of its
clients who are instrumental in the process of OS switching.In this
regard we investigate theoretical properties of networks preferable to
cyber-insurers, as well as mathematically identify users that have a
significant impact on the process of OS switching.

C. Our Contributions
In this paper, we answer the following important questions -(i)

how can we effectively model the OS platform switching process?
(See Section II.), (ii) can we comment on how fast a distributed
network of users would reach willingness invariance, if it exists?, for a
given network, what are the upper bounds in the long run of individual
user willingness to adopt secure OSs? what are the theoretical
properties of networks a cyber-insurer prefers to insure based on
willingness convergence speed and willingness upper bounds? (See
Section III.), and (iv) how could a cyber-insurer incentivize/reward a
client based on his topological location? (See Section IV.)

Through our contributions we mathematically prove that a cyber-
insurer should prefer to insure networks where users on average have
a high willingness to adopt secure OSs, and that the insurer should
reward each user (via insurance contracts) in proportion tothe impact
they have on the average willingness degree of the whole network.
Doing so would correlate to better self-defense investments by users,
alleviating information asymmetry, in turn leading to successful
cyber-insurance markets.

II. GOSSIP-BASED SWITCHING MODEL

In this section we propose a gossip-based switching model that
captures the dynamics of OS platform switching in a distributed
communication network. We first describe the model environment
and follow it up with the description of our assumptions. We then
mathematically capture the evolution of OS switching amongst users
in the network. Finally, we study the convergence of the switching
process.
Why a gossip-model?:We adopt a gossip-based model because when
it comes to embracing OSs, general Internet users tend to rely on
public opinion to a considerable extent before deciding upon an OS
to adopt for long term use. In this regard, there are social contagion
and social influence models in theory as well, but we leave it to a
later discussion (See Section V) of why we choose a gossip-based
model over others.

A. Model Environment
We consider a distributed communication network5 consisting of

n users. Each user adopts6 either a popular Windows operating
systems (ex., XP, Vista), or one of Unix-based OSs such as Linux,
MacOS, etc. as his primary7 computing platform. Irrespective of his
adopted OS, each useri has a particularinitial willingnesswi(0) ǫR
towards adopting a Unix-based operating system for the purposes
of computing8. This assumption is valid as many Windows users

4Why is the speed factor important? - because a high speed invariant
settlement implies the practicality of designing appropriate cyber-insurance
schemes. On the other hand if the invariant settlement time is large, it may
contribute to the infeasibility of insurance schemes.

5The network could be the Internet or any other network havinga decen-
tralized communication system. However, from a cyber-insurance perspective,
the network would most likely be the Internet or a part of it.

6We assume here that a user has only one computing device.
7A user might have partitions on his computing device to storemultiple

OSs.
8We emphasize here that our decision to consider Unix-based OSs as

latently more secure OSs than Windows OSs arise from the study in [5].

have the inclination to use Unix-based OSs but do not use it due
to factors like confidence of operation, and incomplete information
on Unix/Linux application support. We assume thatwi() lies in the
interval [0, 1]. A user already adopting an Unix-based OS has a
willingness value of 1. Each user in the distributed networkupdates
his willingness values over time by interacting with his peers via
an acquaintance network(AN), which is an overlay network on
top of the physical distributed network. The interactions could be
through mutual physical contact or through online communication, or
both. We assume here that the acquaintance network and the initial
willingness values are known to the entity that takes decisions on
cyber-insurance contracts. It could be a cyber-insurance agency, the
government, or other policy makers.

We use the asynchronous continuous-time model in [8] to represent
interactions between users in the AN. In particular, each user interacts
with other users at instances defined by a Poisson process of rate one,
independentof other users. Equivalently, interaction instances across
all users occur according to a raten Poisson process at timestr,
r ≥ 1. In order to entail simplicity of visualizing user interactions,
there aren time slots per absolute time [8], where each time slot
r is of the discrete form[tr, tr+1). There is at most one meeting
(interaction) instance per time slot, and therefore on average there
aren interaction instances per absolute time.

Regarding an interaction, useri meets (interacts with) userj with
probabilitypij . Upon interaction, usersi andj update their individual
willingness according to the following three possibilities.

1) Each user updates his willingness as the average of each other’s
pre-meeting willingness as per the following relation.

wi(r + 1) = wj(r + 1) =
wi(r) + wj(r)

2
.

In this case usersi andj areregular with respect to each other.
The probability of this type of meeting happening betweeni
and j is yij .

2) User j influences useri, in which case for someδ ǫ (0, 1
2
]9,

individual user willingness changes as per the following rela-
tions.

wi(r + 1) = δwi(r) + (1− δ)wj(r).

wj(r + 1) = wj(r).

In this case userj is considered as aninfluential user who
influencesi towards adopting his preferred OS, but himself
does not change his viewpoint10. The probability of this type
of meeting happening betweeni and j is xij . Examples of
influential users include security experts, commercial organi-
zations promoting a certain OS, etc.,

3) Neither i nor j change their opinions on interaction, which
imply the following.

wi(r + 1) = wi(r).

wj(r + 1) = wj(r).

In this case usersi andj are said to bepersistentwith respect
to each other. The probability of this type of meeting happening
betweeni and j is zij , wherezij = 1− xij − yij .

Important Note:The entire analysis in this paper is related to the
acquaintance network. Thus, when we speak of the right network a
cyber-insurer is willing to target, we are referring to the right AN. The
AN is also a distributed communication network but an overlay one.
The results of our analysis on ANs can be mapped to the physical

9For a value of1
2

, i perceivesj as a regular user.
10An analogous example would be of a mobile operator promotinga type

of phone to its clients, i.e., it provides service on a particular phone type (
ex., say phones with Android OSs) and tries to influence potential clients to
buy phones of the corresponding type.
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distributed network, i.e., the insurer prefers to insure its clients if the
client AN graph satisfies certain properties, and it also incentivizes
certain clients based on their topological position in the AN.

B. Assumptions
r We make the following assumptions in this paper.
1) pii = 0∀i, pij ≥ 0∀i, j, and

∑n

j=1 pij = ∀i.
2) The acquaintance networkAN = (V,E) is strongly con-

nected, i.e., for alli, j ǫ V , there exists a path connectingi and
j. A link (a, b) in setE gets formed if and only ifpab > 0.
This assumption implies that each user is socially accessible
to any other user in the acquaintance network possibly through
multiple links. In this regard letd = maxi,j ǫ V dij denote the
maximum shortest path length between anyi, j ǫ V .

3) For all (i, j) ǫE in AN, xij + yij > 0. This assumption states
that irrespective of the type of user, each user gets influenced
by some of his acquaintances. This assumption is realistic as
even experts and organizations are prone to changing their
views based on social influence.

C. The Evolution of User Willingness
We consider a vectorw(r) = (w1(r), ........, wn(r)) denoting the

vector of user willingness for Unix-based OSs at time slotr. The user
willingness in time slotr + 1 is updated according to the following
equation.

w(r + 1) =W (r)w(r), (1)

whereW (r) is stochastic random matrix11 for all r given by the
following

W (r) =







Xij ≡ I −
(ei−ej)(ei−ej)

T

2
w.p.

pijyij
n

,

Y 1ij ≡ I − (1− δ)ei(ei − ej)
T w.p.

pijxij
n

,

Zij ≡ I w.p.
pijzij
n

,

(2)

for all i, j ǫ V , where ei is an n-dimensional vector with a 1 in
position i and zeros in other locations;eT is the transpose of vector
e. The equation implies thatW (r) is a stochastic matrix12 for all
r and is also independent and identically distributed over all r. We
now introduce transition matricesΨ of the following form.

Ψ(r, s) =W (r)W (r−1)...................W (s+1)W (s), ∀r, s, r ≥ s.
(3)

We can rewrite Equation 1 using transition matrices in the following
manner.

wi(r + 1) =

n
∑

j=1

[Ψ(r, s)]ijwj(s). (4)

SinceW (r) is a random variable, we have

E[W (r)] = W̄ , ∀r ≥ 0, (5)

whereW̄ is the mean acquaintance matrix. We can writeW̄ as

W̄ =
1

n

∑

i,j

pij [yijXij + xijYij + zijI.] (6)

or

W̄ =
1

n

∑

i,j

pij [(1− zij)Xij + zijI ] +
1

n

∑

ij

pijxij [Yij −Xij ].

We can express̄W asW̄ = K + L, where

K =
1

n

∑

i,j

pij [(1− zij)Xij + zijI ].

11W (r) is a matrix induced by the acquaintance network and the user
interactions on it, for time slotr. The expression forW (r) can be derived
by applying simple concepts fromrandom matrix theory.

12A stochastic matrix has each of its rows sum to 1.

and
L =

1

n

∑

ij

pijxij [Yij −Xij ].

We note thatK only depends on the user meeting probabilitiespij of
users and the probabilitieszij denoting the likelihood of two users,
persistent relative to each other, meeting. Thus,K can be considered
as asocial matrixrepresenting underlying social interactions amongst
users, where the matrix is symmetric and doubly stochastic.i.e., both
the row sums and column sums of the matrix sum to 1. This property
would be useful in consideringK as a Markov chain while analyzing
our model. The matrixL on the other hand can be thought of as
representing the influence structure because it includes the influencing
probabilities xijs and yijs. L can be thought of as aninfluence
matrix that incorporates information about which users and links are
influential and regular.We emphasize here that bothK and L are
based on the dynamics of social interactions on the AN.

D. Convergence of User Willingness
In this section we study the convergence of the OS platform

switching process. We show that despite the presence of influential
users existing in an acquaintance network, each with different initial
willingness values, every user willingness value converges to a
single common value in the long run. This implies that ultimately
every user has the same willingness to switch to a secure OS/s.
Note that thisdoes not meanthat in the long-run every user will
switch to a secure OS. We state the following theorems to highlight
our results on willingness convergence. The proofs of the theorems
are presented in the Appendix.

Theorem 1. The user willingness sequence{wi(r)} converges to a
common willingness valuēw, such that

limr→∞wi(r) = w̄, ∀i ǫ V, w.p.1

and

w̄ =
n
∑

j=1

πjwj(0),
n
∑

j=1

πj = 1, πj ≥ 0∀j

wherew̄ is a limiting random variable.

Theorem Implications:The Internet users in the long run reach a
common agreement regarding the willingness to adopt a secure OS,
i.e., each user has the same value of willingness to adopt secure
OSs. The theorem result is interesting and counter-intuitive13 but
makes sense in the light of the assumption that even persistent
agents are prone to changing their willingness under influence of
social interactions. Thus, in the long run each user willingness
converges to a single random variable taking up a common value. It
is evident that higher the common value, more preferable it becomes
for a cyber-insurer to insure its clients. The common value depends
on the order in which user acquaintances have taken place. This
leads us to investigating the expected value of the random variable,
and that is what we accomplish via the next theorem.

Theorem 2. Let w̄ be the limiting random variable of the
willingness sequences{wi(r)}, ∀i ǫ V . We have

limr→∞W̄
k = eπ̄

T
, π̄

T = E[π].

and

E[w̄] =

n
∑

i=1

π̄wi(0) = π̄
T
w(0),

13It is strange to believe that each user will have the same willingness in
the long run given that each might start the evolution process with widely
varying willingness values. It seems more likely that therewould be a cluster
of users having different willingness values.
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wheree is the vector of all ones, and̄π is the stationary distribution
w.r.t. mean acquaintance matrix̄W .

Theorem Implications:We note here thatπ̄ is the stationary
distribution indicating the weight given to each user in affecting the
expected value of common converged value of willingness. This
weight can be considered as a measure of the influence of each user
on the average willingness in the long run. We will discuss more
on user influence in subsequent sections, and its implications to
cyber-insurance. An interesting thing to note is that in theabsence
of influential users,xij is zero for all i and j, and as a result the
average value ofwi(r) remains constant in each time slotr, and is
equal to the average of the initial user willingness, and each user
has the same amount of influence. The stationary distribution in this
case is an-dimensional vector where each element is1

n
.

III. W ILLINGNESS BOUNDS AND ITS IMPORTANCE TO

CYBER-INSURERS

In the previous section, we showed that users in a network
converge to a common willingness value in the long run. In this
section we derive theoretical bounds on the performance of OS
switching in Internet-like distributed systems. We define performance
as an average function of the converged value of individual user
willingness. In this regard we study howfast a network of users
converge to a common willingness value, and what are the properties
of networks based on the speed of convergence and the value ofthe
performance function.Our study in this section paves the way for
cyber-insurers to make decisions on designing appropriatecontracts
for clients in different types of networks.

A. Performance Function
We adopt the following performance functionP in this paper.

P (w̄) = E[w̄ − γ] = E[w̄]− γ =
∑

iǫV

(π̄ −
1

n
)wi(0), (7)

where

γ =
1

n

n
∑

i=1

wi(0). (8)

Interpretation of Performance Function:The performance function
measures the deviation of the common converged willingnessvalue
from the average of the initial user willingness values. Therationale
behind using such a function is the fact that we want to compare the
limits of user influence by influential users with that when noinfluen-
tial users in the network are present. An important significance of the
performance function is the impact of the presence of influential users
in the network, which in turn correlates to the impact of individual
user contributions to the common converged value. We will study
more about individual influence contributions in Section IV, and its
implications on cyber-insurance contracts.

We state the following two theorems in relation to evaluating
upper bounds of user willingness. The proofs of the theoremsare in
the Appendix.

Theorem 3. (a) Let π̄ denote the stationary distribution related to
the common converged value of user willingness. Then the following
relation holds.

||π̄ −
1

n
e||∞ ≤

1

1− ρ

∑

i,j pijxij

2n
, (9)

whereρ is a constant equalling(1 − nΨ1d)
1

d , and Ψ1 is given by
the following

Ψ1 = min(i,j)ǫE

{

1

n
[pij

1− zij

2
+ pji

1− zji

2
]

}

.

(b)

|E[w̄ −
1

n

n
∑

i=1

wi(0)| ≤
1

1− ρ

∑

i,j pijxij

2n
||w(0)||∞ (10)

Theorem 4. Let π̄ denote the stationary distribution related
to the common converged value of user willingness. Then the
following relation holds.

||π̄ −
1

n
e||2 ≤

1

1− λ2(K)

∑

i,j pijxij

n
, (11)

whereλ2(K) is the largest eigenvalue of the matrixK.

Implications of Theorems 3 and 4:We jointly provide the
implications of the two theorems as they are quite interrelated
with each other. First, the two theorems provideupper boundson
our performance function. Second, the theorem characterizes the
variation of the stationary distribution in terms of (i)

∑
i,j pijxij

n
,

which is the average influence by influential users, and (ii)λ2(K),
the second largest eigenvalue of the social matrixK. It is common
knowledge that the term1 − λ2(K) is the spectral gap of a matrix
[9] and controls the rate of convergence of the Markov chain induced
by matrixK14 to its stationary distribution̄π. In theory, the larger
the spectral gap, faster does powers of a Markov chain converge to
its stationary distribution. A fast converging Markov chain is called
fast-mixing. Now Theorem 4 states that for a fast-mixing Markov
chain induced by the social matrix, it would fast converge tothe
average of the initial willingness of individual users, i.e., γ, which in
turn implies that the impact of influential users on other network15

users would be negligible with respect to making them adopt secure
OSs. This is intuitive because in a fast-mixing graph (Markov chain)
there are several connections between any pair of users. In this
regard, consider an influential user who is influenced by someother
users in the network. These users are in turn connected to other
users in the network due to the fast-mixing property of the graph.
Assuming that the number of non-influential users are much greater
in number than influential users, the common converged willingness
value for all users in a fast-mixing graph is the average of initial
individual user willingness.Thus, a cyber-insurer would NOT prefer
to insure its clients that form a fast-mixing social graph, OR they
would like to insure the users via a different type of cyber-insurance
contract than what they plan for users in a slow-mixing graph.

In a slow mixing graph (Markov chain) there is a high degree
of clustering of influential users and these users get their influence
from mostly regular users whom they have already influenced in the
past. Due to the loosely connected clusters, the influentialagents will
spread their influence widely before they get feedback from users they
already influenced in the past. As a result the commonly converged
willingness value will be much closer to the mean willingness of
influential users.Thus, a cyber-insurer would prefer to insure its
clients that form a network inducing a slow-mixing Markov chain
on its social graph.

IV. ON PROPORTIONALLY INCENTIVIZING CLIENTS

In this section we focus on individual client effects on the common
converged willingness value. The individual impacts provide cyber-
insurers with ways to incentivize clients differently based on their
amount of impact on the network performance function. In this paper
we measure the impact of each individual user via the expression

14SinceK is a stochastic matrix, it can be considered as a transition matrix
of Markov chain.

15Here the term ‘network’ implies the acquaintance network. In specific it
refers to the network induced by the social matrixK, which is formed by
user acquaintance dynamics on the AN.
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π̄ − 1
n

. The term 1
n

comes from the average of all initial individual
willingness and through individual impact we measure the deviation
from the average of long-run individual willingness. The incentives
would most likely be in the form ofdifferential cyber-insurance
contractswith lesser premiums charged to network users who have a
greater impact on the value of the network performance function. In
this section we divide our analysis of individual impacts into three
parts based on the effect of influential edges (between the influencer
and the influencee) on graph connectivity: in the first part weconsider
general graphs induced by the social matrix where there may or
may not be edges that are formed between an influencer and the
influencee - we term these graphs asClass I graphs, in the second part
we consider graphs induced by a social matrix where edges formed
between influential users and their influencees are necessary for the
graph to be connected - we term these graphs asClass II graphs, and
finally we consider graphs in which edges formed between influential
users and influencees are not necessary for the graph to be connected
- we term these graphs asClass III graphs. By the term ‘graphs’ we
imply graphs induced by the social matrixK, which in turn is formed
via user interactions on the AN. Our analysis is heavily based upon
the concept of mean first passage times in the theory of Markov
chains.The rationale behind adopting this concept is that the impact
of opinions is dependent on the social distance between users, and
the passage times reflect the speed with which opinions reachusers
separated by certain social distances.

A. Class I Graphs

General graphs are induced byK, with the condition that there
are no constraints on the presence of links between the influencer
and the influencee. We provide our result on the amount of individual
user impact in the form of the following theorem. The proof ofthe
theorem is mentioned in the Appendix.

Theorem 5. Let π̄ denote the stationary distribution related
to the common converged value of user willingness. Then the
following relation holds for every userk.

π̄k −
1

n
=

1

2n2

∑

i,j

pijxij ((1− 2δ)π̄i + p̄ij) (mik −mjk), (12)

wheremik andmjk are the mean first passage times16 from i to k
and j to k respectively, in the Markov chain induced byK.

Theorem Implications: The theorem provides an exact closed
form expression for the impact of a userk on the value of the
network performance function in terms of the mean first passage
times from k to the influential and influenced users. To provide
an intuition, consider a single edge(j, i) between influencerj and
influenceei. Thus, for k 6= {j, i}, its influence could be indirect
on the willingness ofj. In this regardmjk represents the distance
betweenj and k and enters negatively into Equation 12. On the
other hand any user who meets with useri with a high probability
would be influenced indirectly byj. Thus, the impact of userk on
the performance function would be increasing inmik, i.e., when
mik is smallk has negative impact as he is very closed to influenced
agenti, whereas whenmjk is smallk will have a positive impact on
the performance function as his opinions would be quickly absorbed
by j. The theorem generalizes our intention to multiple links of
the form (j, i). In the case of the absence any links of the form
(influencer, influencee), the impact ofk is zero.

16The mean first passage time from nodei to nodej in a Markov chain
having transition probability matrixK is given asmij and equals

Yjj−Yij
πj

,

whereY =
∑∞
k=0(K

k
−K∞) [9] is the fundamental matrix of the Markov

chain induced byK.

B. Class II Graphs
We deal with graphs induced byK where there exists links

between influencers and the influencees, which when removed from
the graph disconnects the graph. In this regard, we provide our
result on the amount of individual user impact in the form of the
following theorem. The proof of the theorem is mentioned in the
Appendix.

Theorem 6. Let π̄ denote the stationary distribution related
to the common converged value of user willingness. Let therebe
an edge (i, j) in the graph induced byK such thatxij > 0.
Assuming that removing(i, j) from the graph would disconnect it,
the following relation holds for all userk.

π̄k −
1

n
=

2

n2

µij(1− δ)

1−
µij

n
((1 + 2δ)|N(i, j)| − |N(j, i)|)

Ωij(k), (13)

where
µij =

pijxij

pij(1− zij) + pji(1− zji)
,

and

Ωij(k) = |N(i, j)|, k ǫN(j, i); Ωij(k) = −|N(j, i)|, k ǫN(i, j),

whereN(i, j) and N(j, i) are two disjoint sets of nodes on the
removal of edge(i, j) from the graph.

Theorem Implications:The theorem implies that if there is a
single influential edge between two user clusters, then the impact
of each user within the same clusters, on the network performance
function, are equal. Intuitively, all users in a cluster in which there
is the influential user will in the long run shape the willingness of
the influential user through their individual impacts, and surprisingly
it is the same amount of impact for all the users irrespectiveof
whether the user is directly connected to the influential user. This is
because in the limiting distribution, the common convergedvalue
will impact the willingness value of the influential user, and since
there is only one such influential user, the impact of all other
non-influential users are the same.

C. Class III Graphs
We deal with graphs induced byK where there exist links

between influencers and the influencees, which when removed from
the graph need not necessarily disconnect the graph. In thisregard,
we provide our result on the amount of individual user impacton the
network performance function in the form of the following theorem.
The proof of the theorem is mentioned in the Appendix.

Theorem 7. Let π̄ denote the stationary distribution related
to the common converged value of user willingness. Then the
following relation holds for all userk.

|π̄k −
1

n
| ≤

∑

i,j

2pijxij
n

(
1 + log n

ψ
), (14)

where ψ is the conductance of the Markov chain with transition
matrix given byK.

Implications of Theorem 7:The conductance of a Markov
chain [9] is defined as follows.

ψ = infA⊂V
Q(A,Ac)

π(A)π(Ac)
, (15)

whereQ(A,Ac) =
∑

iǫA,jǫAc πiKij , and π(A) =
∑

iǫA πi. The
conductance resembles the minimum probability that a Markov chain
goes from a state inA to a state inAc. Thus, the conductance is an
appropriate measure of the mixing time of the graph induced by social
matrixK. Greater the conductance value, the more connected is the
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graph. The theorem gives the expression for the upper bound of the
individual impact on the performance function for Class IIIgraphs.
It is evident that greater the conductance the impact decreases due
to the graph getting better connected.

V. RELATED WORK

In this section, we briefly describe related work as applicable to
our paper. We compare our work with three different researchareas
suited to influencing Internet users to adopt Unix-based OSs, viz.,
influence maximization, diffusion of ideas, andcascading effects due
to cyber-insurance adoption.

A. Influence Maximization
The problem of OS platform switching bears some resemblance

to the problem of influence maximization in social networks,even
though it is different than influence maximization problem.The
latter problem was first studied by Domingos and Richardson in
[13], where a social network of potential customers of a market
product is modeled as a Markov random field, and probabilistic
techniques are used to find those customers to target to for effective
viral marketing17. In a seminal piece of work, Kempe et.al. [24]
study influence maximization in social networks via the following
algorithmic problem - given a social network graph and influence
probabilities on each edge, how do we select a small set of initial
users so as to maximize the set of users who get influenced. Theau-
thors model the problem as a discrete optimization problem assuming
suitable models of information diffusion18 They prove the problem
to be NP-Hard and propose constant factor greedy approximable
algorithms based on submodular functions [17] that find the initial
set that guarantee a solution that is within 63% of the optimal. The
authors also show that their algorithms out-perform node-selection
heuristics based on the concepts ofdegree centralityand distance
centrality used in social network analysis. Following up on the work
by Kempe et.al., several works [10][11][12][26][32] have addressed
the algorithmic version of the influence maximization problem and
bettered the greedy algorithm proposed in [24].

Drawbacks of existing solutions- The related works on influence
maximization are mainly targeted towards ways toeffectivelymarket
new products/novel ideas developed by an organization. On the
other hand, our paper formulates the base orpre-step, using which
ways to effectively market cyber-insurance adoption can bedesigned.
However, the existing works have the following implementability
drawbacks on parameters common to our work: (1) they only assume
an influence value for each neighbor of a user and use the threshold
model to judge whether a user would adopt an OS, but the works do
not theoreticallymodel the time (dynamics of the influence process) it
takes for users to reach willingness convergence. We model the time
dynamics in this paper as a stochastic process. The analysishelps the
cyber-insurer have an idea regarding the time feasibility of adoption,
and (2) The influence of each potential product user on his neighbors
in the social graph is assumed to be known to the organization. This
is certainly not the case in reality and also in the case of an ISP
(a potential cyber-insurance agency) willing to indulge its clients in
using Unix-based OSs. An ISP may at best know the social graphbut
not the individual influence degree. Thus, the system model proposed
in [24] and subsequent related works in order to achieve influence
maximization, is not implementation realistic19

17Viral marketing is a marketing technique used by companies to promote
the cascading of new products or innovative ideas. The technique exploits
the network value of customers in order to cascade the adoption of new
ideas/products.

18The paper considers theLinear Threshold Modeland theIndependent
Cascade Modelof diffusion.

19An ISP could design efficient incentive-compatible game-theoretic mech-
anisms to enable users to willingly and truthfully confide tothe ISP their
influence values on social contacts, but users might themselves not have a
clear idea of the influence values in the first place.

B. Diffusion of Ideas
Models from the theory of diffusion have been used in existing

literature to model and explain the dynamics of adoption of new
ideas in a social network. In some basic models [14][45], a user’s
decision to adopt a new idea is based on the decisions of its neighbors
in the social graph. These models follow the principle that auser
adopts a new idea only if a certain number of its neighbors in the
social graph adopt the new idea, where individual user thresholds
are assumed to be homogenous across the users. In a different
type of a diffusion model introduced in [15][35], the users adopt
a new idea where the threshold value is a function of the payoff
of a coordination game. In a recent work [28], the author uses the
coordination game model to analyze the spread of new behaviors
in a random social graph and show the following: (1) When the
social network is sufficiently sparse, the contagion is limited by the
low connectivity of the network; when it is sufficiently dense, the
contagion is limited by the stability of the high-degree nodes. This
phenomenon explains why contagion is possible only in a given
range of the global connectivity, (2) When contagion is possible,
both in the low and high-connectivity cases, the number of pivotal20

players is low, resulting in rare occurences of cascades. However in
the high-connectivity case, the system displays a robust-yet-fragile
quality: while the cascades are very rare, their sizes are very large.
This feature makes global contagions exceptionally hard toanticipate,
and (3) When the initial number of adopters of a new idea is
small, the idea spreads for low global-connectivity, whereas high
global connectivity inhibits global contagion, but once itoccurs, the
connectivity facilitates spread.

Drawbacks of existing solutions:The models in [14][45] assume
homogenous adoption thresholds for individual users. However in
reality, each user has different thresholds21 In regard to the models
based on the coordination game, each one of them assume equal
payoffs for all users for adopting a given choice. However, in reality
each user is most likely to have different payoffs for adopting a
given choice. In addition, the models assume a zero payoff for
two users when they coordinate and find that each has a different
adoption choice. This again is unrealistic as each user is more likely
to have an increase/decrease in his payoff on coordination resulting
in contradictory opinions, rather than him landing directly on a zero
payoff. The work in [28] base its analyses and results on a random
social graph. However, random graphs hardly represent any real-life
phenomena.

C. Cascading Effects Due to Cyber-Insurance
Lelarge and Bolot in [30] have modeled the dynamics of the

Internet users investing in self-defense, and shown that cyber-
insurance incentivizes Internet users to optimally investin self-
defense investments and helps cause a self-defense cascade, i.e.,
incentivizing a certain number of Internet users to invest in self-
defense causes all the Internet users to invest in self-defense, in
turn increasing overall network security. In deriving their results, the
authors in [30] account for the ‘externality’ factor and the‘free-
riding’ problem related to user security investments, i.e., security
investments by a user’s neighbors generates a positive externality
for the user, and might result in the user investing sub-optimally in
self-defense. To prove the occurrence of a self-defense cascade, the
authors use utility-theoretic comparisons to show more benefit to a
user due to him optimally investing in self-defense mechanisms, when
compared to him not investing optimally.

Drawbacks of the existing solution:The authors analyze random
graphs and base their results on such graphs, which do not represent
real-life phenomena. In our work, we address arbitrary graphs rather

20the largest component of players requiring a single neighbor to change
strategy in order to follow the change.

21The Linear threshold model and the Independent cascade model do
account for heterogenous thresholds.
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than graphs of any special kind. In addition, they representthe
Internet topology as a random graph, which is proven not to bethe
case [16]. However, it is not realistic to assume that the cascading
phenomenon as mentioned in [30] is the way cascading might occur
in the Internet. This is because the model in [30] does not (i)model
facets of human behavior (influence, coordination) that areimportant
for practically achieving cascades and (ii) account for thefact that
a node neighbor (In the Internet topology graph) may not haveany
social relationship with the node to share influence on the factor of
investing in self-defense.

D. Difference Between Our Problem and Existing Works

Most related works study new-idea cascades as some form of a
‘diffusion of adoption’ problem. In our work, we solve a problem
similar to the diffusion problem in [30]. However, we do not aim
to study “diffusion of adoption” as in [30] and other relatedworks,
but investigate the “diffusion of willingness” problem because of the
following two reasons:

• In reality, the decision of whether an Internet useri will switch
his OS depends on the evolution ofi’s change willingness(a
psychological factor)over time. Higher the willingness of a
user to change his OS in the long-run, greater are his chances
of actually doing so. The willingness is driven by individual
factors such as ease of OS use, application support, etc., as
well as influences from social contacts. The model in [30] is
not practical, specifically in the case of switching OSs because
it is simply may not be the case that a user changes OS if
majority of his neighbors in the social graph use a differentOS
than he uses; the user’s willingness to change OS also depends
on the influence that these neighbors (and possibly some non-
neighbors) exert and his own personal want. As an example, it
may well be the case that all of a Windows user’s neighbors use
Unix-based OSs but the user is stubborn enough to not being
influenced by any of his neighbors. Our assumptions provide an
explanation of why the rate of users changing from Windows to
Unix-based OSs today, is so slow - the fact is that some users
just do not want to stop using the Windows OS.

• By solving the “diffusion of willingness” problem via relaxing
some impractical modeling and topological assumptions made
in [30] and [28], we plan to answer the following important
question:Is there hope to mitigate the information asymmetry
problem in cyber-insurance through platform switching, and
thus enable the successful existence of cyber-insurance markets?

VI. CONCLUSION

In this paper, we argue in favor of OS platform switching (towards
secure OSs) to be a way to enforce successful cyber-insurance
markets. In this regard we have studied the dynamics of the OS
switching process amongst users in an acquaintance network, which
is an overlay network over a physical distributed communication
network. Our analysis heavily relied on the theory of Markovchains.
We found that cyber-insurers would prefer to insure users ina slow-
mixing social graph due to high performance on such graphs w.r.t.
final averaged willingness of users to adopt secure OSs. For fast-
mixing graphs, the cyber-insurers would have to design contracts via
effective mechanism design to entail successful markets. We also
proved upper bounds on the performance function in a given social
graph induced by an acquaintance network. We showed that theupper
bound is higher in case of slow-mixing graphs when compared to
high-mixing graphs. Finally, we computed exact expressions for the
impact of each individual user in an acquaintance network onthe final
converged value of willingness of users. Based on the impactvalue
the cyber-insurer would differentiate contracts, charging inexpensive
premiums for high impact users and higher premiums for low impact
users.
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VII. A PPENDIX

In this section we provide proofs of the theorems stated in the
paper.

Proof of Theorem 1.Let M(r) = maxiǫV wi(r) and let
m(r) = miniǫV wi(r). For anyr ≥ 0 we obtain the following

E[M(r)−m(r)] ≤ [C(M(0) −m(0))], (16)

whereC = [1− ( η
d

2
)n

2

+ ( η
d

2
)n

2

(1− nηd

2δn
2
−1

)]
⌊ r

n2d
⌋. This implies

that
limr→∞M(r)−m(r) = 0, w.p.1.

The stochasticity of matrixW (r) implies that sequences{M(r)}
and {m(r)} are bounded and monotone and therefore converges to
the same limitw̄. Thus,limr→∞wi(r) = w̄. Now let s = 0. Thus,
for all i we have

wi(r) =
n
∑

i,j

[Ψ(r − 1, 0)]ijwj(0), ∀r ≥ 0 (17)

Now for any initial willingness vectorw(0), the limit limr→∞wi(r)
exists and is independent ofi. Thus, for any h, the limit
limr→∞[Ψ(r − 1, 0)]ih exists and is independent ofi. Denoting
this limit as πh, and using above equations we prove the second
part of our theorem result.�

Proof of Theorem 2.The first part of the theorem follows
from Theorem 4.1.4 in [23]. For the second part of the theoremwe
have for allr ≥ 0

w(r) = Ψ(r − 1, 0)w(0).

Sincew(r) → w̄e in the limiting case ofr being∞, we have the
following result in the light of the Lebesgue Dominated Convergence
Theorem [47].

E[w̄e] = E[limk→∞w(r)] = limr→∞E[w(r)]. (18)

Under the assumption that matricesW (r) are independent and
identically distributed over allr, we have

E[w̄e] = limr→∞E[Ψ(r − 1, 0)w(0)] = limr→∞W̄
r(0), (19)

which in turn impliesE[w̄] = π̄Tw(0), thus proving the theorem.�

Proof of Theorem 3.For the first part of the theorem we can
start by using a result from peturbation theory in Markov chains to
the difference betweenbarπ and 1

n
e. According to the result, the

following holds.

(p̄i−
1

n
e)T =

1

n
e
T
LY (I − LY )−1

, (20)

whereY as mentioned previously is the fundamental matrix ofK.
The equation further evaluates to

||π̄ −
1

n
e||∞ ≤ ||LY ||∞ (21)

We now find an upper bound for||LY ||∞, whereLY =
∑∞

r=0LK
r.

From the linear update rule we have for anyaǫRn, LKra(0) =
La(r) for all r. Thus, the following relation is achieved.

LK
r
a(0) =

1

n

∑

i,j

pijxija
ij(r), (22)

where aij(r) is equal toY 1ij − Xij ]a(r), ∀i, j, k ≥ 0. Now we
have

||LKr
a(0)||∞ ≤

1

2n
(
∑

i,j

pijxij)ρ
r(M(0) −m(0)). (23)

SinceM(0)−m(0) ≤ 1, we have

||LY a(0)||∞ ≤

∑

i.j pijxij

2n(1− ρ)
(24)

We thus get

||π̄ −
1

n
e||∞ ≤

1

1− ρ

∑

i,j pijxij

2n

For the second part of the theorem, we haveE[w̄] = p̄iw(0). This
implies the following.

|E[w̄]−
1

n

n
∑

i=1

w(0)| = |π̄Tw(0)−
1

n
e
T
w(0)| ≤ ||π̄−

1

n
e||∞||w(0)||∞.

(25)
This equation in conjunction with the result in the first partof the
theorem proves the theorem.�

Proof of Theorem 4.We know that

||π̄ −
1

n
e||2 ≤ ||LY ||2. (26)

We focus on finding the upper bound of||LY ||2. Let a(0) ǫRn be
an initial vector with ||a(0)||2 = 1 and let there be the following
sequence

a(r + 1) = Kx(r) ∀r ≥ 0.

Then for allr we have the following equation.

LK
k
a(0) =

1

n

∑

i,j

pijxija
ij(r) (27)

The upper bound of||aij(r)||22 is computed as||a(r) − āe||22. Now
note thata(r) − āe is orthogonal toe, which is the eigen vector
corresponding to the largest eigenvalueλ1 = 1 of matrix K. Thus
we have the following relation.

||a(r)− āe||22|| ≤ (λ2(K)2)r||a(0) − āe||22 ≤ λ2(K)2r, (28)

whereλ2(K) is the second largest eigenvalue of matrixK. Thus,
||aij(r)||2 ≤ λ2(K)r, ∀r ≥ 0. Using the result of the fundamental
matrix Y , we get

||LY a(0)||2 ≤
1

1− λ2(K)

∑

i,j pijxij

n
, (29)
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for any vectora(0) with ||a(0)||2 = 1. Combining this result with
Equation 16, we prove the theorem.�

Proof of Theorem 5.Based on the Markov chain theory we
can write the individual impact of userk as

π̄k −
1

n
= π̄

T
L[Y ]k, (30)

where Y is the fundamental matrix of the Markov chain with
transition matrixK and L equals 1

n

∑

ij pijxij [Yij − Xij ]. Now
L[Y ] can be expressed as

[L[Y ]k]l =
∑

i,j

pijxij

n







( 1
2
− δ)(Yjk − Yik) if l = i,

1
2
(Yjk − Yik) if l = j,

0 otherwise.
(31)

Thus, we have the following equation from the above relationships.

π̄k −
1

n
=

1

2n

∑

i,j

pijxij ((1− 2δ)π̄i + p̄ij) (Yjk − Yik) (32)

Substituting the value ofYjk−Yik as 1
n
(mik−mjk) into the above

equation, we obtain our theorem result.�

Proof of Theorem 6.Since K is a doubly stochastic matrix,
we havemij =

|Ni.j |

Kij
, for every k ǫN(j, i),mik − mjk = mij .

Since (i, j) is an influential link we have for everyk ǫN(j, i) the
following relation

mik −mjk =
|N(i, j)|

Kij

=
2n|N(i, j)|

pij(1− zij) + pji(1− zji)
. (33)

Similarly for everyk ǫN(i, j) we get

mik −mjk = −
|N(i, j)|

Kij

= −
2n|N(i, j)|

pij(1− zij) + pji(1− zji)
. (34)

Using the preceding relations we can express the relative mean
passage time as

mik −mjk =
2nµij
pijxij

Ωij(k). (35)

Now since(i, j) is the only influential link, we have

π̄k −
1

n
= (

2

n2
)
µij(1− δ)

1−
ψij

n2

Ωij(k), (36)

where
ψij =

pijxij

2
[(1 + 2δ)mij −mji].

Combining the above results we prove Theorem 6.�

Proof of Theorem 7.For everyk we have

|π̄k −
1

n
| =

1

2n2

∑

i,j

pijxij ((1− 2δ)π̄i + p̄ij) |mik −mjk|

≤
∑

i,j

pijxij

2n2
|mik −mjk| ≤

∑

i,j

pijxij

2n2
max{mik,mji}

Sincemik ≤ mij +mjk andmjk ≤ mji +mik, we have

|π̄k −
1

n
| ≤

∑

i,j

pijxij

2n2
max{mik +mji} (37)

Applying the following relation from [2], i.e.,

maxi,j{mij +mji} ≤
4(1 + log n)

ψminπk

we get

|π̄k −
1

n
| ≤

∑

i,j

2pijxij
n

(
1 + log n

ψ
). �
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